Wingless induces transdetermination in developing Drosophila imaginal discs.

نویسندگان

  • L Maves
  • G Schubiger
چکیده

Drosophila imaginal discs, the precursors of the adult fly appendages, have been the subject of intensive developmental studies, particularly on cell determination. Cultured disc fragments are recognized not only for the ability to maintain their determined state through extra cell divisions but also for the ability to transdetermine, or switch to the determined state of a different disc. An understanding of transdetermination at a molecular level will provide further insight into the requirements for maintaining cell determination. We find that ectopic expression of the Drosophila gene wingless induces transdetermination of foreleg imaginal disc cells to wing cells. This transdetermination occurs in foreleg discs of developing larvae without disc fragmentation. The in situ-transdetermining cells localize to the dorsal region of the foreleg disc. This wingless-induced transdetermination event is remarkably similar to the leg-to-wing switch that occurs after leg disc culture. Thus we have identified a new approach to a molecular dissection of transdetermination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A molecular basis for transdetermination in Drosophila imaginal discs: interactions between wingless and decapentaplegic signaling.

We are investigating how Drosophila imaginal disc cells establish and maintain their appendage-specific determined states. We have previously shown that ectopic expression of wingless (wg) induces leg disc cells to activate expression of the wing marker Vestigial (Vg) and transdetermine to wing cells. Here we show that ectopic wg expression non-cell-autonomously induces Vg expression in leg dis...

متن کامل

Ectopic expression of wingless in imaginal discs interferes with decapentaplegic expression and alters cell determination.

We have expressed the segment polarity gene wingless (wg) ectopically in imaginal discs to examine its regulation of both ventral patterning and transdetermination. By experimentally manipulating the amount of Wg protein, we show that different thresholds of Wg activity elicit different outcomes, which are mediated by regulation of decapentaplegic (dpp) expression and result in alterations in t...

متن کامل

Cell proliferation control by Notch signaling in Drosophila development.

The Notch receptor mediates cell interactions controlling the developmental fate of a broad spectrum of undifferentiated cells. By modulating Notch signaling in specific precursor cells during Drosophila imaginal disc development, we demonstrate that Notch activity can influence cell proliferation. The activation of the Notch receptor in the wing disc induces the expression of the wing margin p...

متن کامل

Regulation of cellular plasticity in Drosophila imaginal disc cells by the Polycomb group, trithorax group and lama genes.

Drosophila imaginal disc cells can switch fates by transdetermining from one determined state to another. We analyzed the expression profiles of cells induced by ectopic Wingless expression to transdetermine from leg to wing by dissecting transdetermined cells and hybridizing probes generated by linear RNA amplification to DNA microarrays. Changes in expression levels implicated a number of gen...

متن کامل

Arrow (LRP6) and Frizzled2 cooperate to degrade Wingless in Drosophila imaginal discs.

Lysosome-mediated ligand degradation is known to shape morphogen gradients and modulate the activity of various signalling pathways. We have investigated the degradation of Wingless, a Drosophila member of the Wnt family of secreted growth factors. We find that one of its signalling receptors, Frizzled2, stimulates Wingless internalization both in wing imaginal discs and cultured cells. However...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 121 5  شماره 

صفحات  -

تاریخ انتشار 1995